Ders Adı Kodu Yarıyıl T+U Saat Kredi AKTS
Lineer Fonksiyonel Analiz -II AFT 672 0 3 + 0 3 6
Ön Koşul Dersleri

Lineer Fonksiyonel Analiz I dersinin alınmış olması tavsiye edilir

Önerilen Seçmeli Dersler
Dersin Dili Türkçe
Dersin Seviyesi Doktora
Dersin Türü Seçmeli
Dersin Koordinatörü Prof.Dr. METİN BAŞARIR
Dersi Verenler
Dersin Yardımcıları
Dersin Kategorisi Diğer
Dersin Amacı

Banach Cebirleri, Hilbert Uzayları Dual operatörler kavramlarını anlamak. Dual operatör, Adjoint operatör, simetrik operatör ve self-adjoint operatör, Unitary operatör, Cayley Dönüşümü, Kapalı Bölge teoreminin kavranması.

Dersin İçeriği

Banach Cebirleri ( Cebir ve Banach cebiri, Homomorfizm and izomorfizm, spektrum ve Gelfand-Mazur teoremi, Gelfand gösterim teoremi) , Hilbert Uzayları ( İç çarpım ve Hilbert uzayları, ortonormal kümeler, bir Hilbert uzayın dual uzayı) Dual operatörler ( dual operatör, Adjoint operatör, simetrik operatör ve self-adjoint operatör, Unitary operatör, Cayley Dönüşümü, Kapalı Bölge teoremi)

# Ders Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
1 Banach Cebirleri ve çeşitlerini tanır. Anlatım, Soru-Cevap, Beyin Fırtınası, Eğitsel Oyun, Deney ve Laboratuvar,
2 Hilbert Uzaylarını yorumlar. Anlatım, Soru-Cevap, Beyin Fırtınası, Eğitsel Oyun, Deney ve Laboratuvar,
3 Dual operatörleri tanır. Anlatım, Soru-Cevap, Beyin Fırtınası, Eğitsel Oyun, Deney ve Laboratuvar,
4 Adjoint operatör, simetrik operatör ve self-adjoint operatör, Unitary operatörleri tanır. Anlatım, Soru-Cevap, Beyin Fırtınası, Eğitsel Oyun, Deney ve Laboratuvar,
5 Cayley Dönüşümünü, Kapalı Bölge teoremini yorumlar. Anlatım, Soru-Cevap, Beyin Fırtınası, Eğitsel Oyun, Deney ve Laboratuvar,
6 Fonksiyonel analizin temel teoremlerini yorumlar. Anlatım, Soru-Cevap, Beyin Fırtınası, Eğitsel Oyun, Deney ve Laboratuvar,
Hafta Ders Konuları Ön Hazırlık
1 Cebir ve Banach cebiri [2] Sayfa 123-126
2 Homomorfizm and izomorfizm, spektrum [2] Sayfa 126-147
3 Gelfand-Mazur teoremi, Gelfand gösterim teoremi [2] Sayfa 147-159
4 İç çarpım ve Hilbert uzayları, [2] Sayfa 159-167
5 ortonormal kümeler, bir Hilbert uzayın dual uzayı [2] Sayfa 167-169
6 Dual operatörler [2] Sayfa 169-190
7 lineer uzaylar, altuzaylar, boyut, bölüm uzayları, konveks kümeler , lineer metrik uzaylar [2] Sayfa 191-204
8 Adjoint operatör, simetrik operatör [2] Sayfa 205-222
9 Ara sınav
10 self-adjoint operatör, Unitary operatör [2] Sayfa 223-227
11 Cayley Dönüşümü 2] Sayfa 228-238
12 Banach-Steinhaus teoremi, açık dönüşüm ve kapalı grafik teoremi [2] Sayfa 238-248
13 Hahn-Banach genişleme teoremi [2] Sayfa 249-269
14 Kapalı Bölge teoremi [2] Sayfa 269-275
Kaynaklar
Ders Notu

[1] Musayev, Binali; Fonksiyonel Analiz, Balcı Yayınları, 2000, İstanbul

Ders Kaynakları

[2] Maddox,I.J.; Elements of Functional Analysis, Cambridge Un.Press,1970,London.
[3] Şuhubi, Erdoğan; Fonksiyonel Analiz, İTÜ Vakfı, 2001, İstanbul
[4] Naylor, Arch; Linear Operator Theory in Engineering and Science, Springer-Verlag, 1982.

Sıra Program Çıktıları Katkı Düzeyi
1 2 3 4 5
1 Yaşadığı toplumun bilgi toplumu olmasına katkıda bulunmak, toplumsal, bilimsel, kültürel ve etik sorunlara çözüm sunmak amaçlarıyla alanındaki bilimsel, teknolojik, sosyal veya kültürel ilerlemeleri içeren bilimsel projeler geliştirir ve bu projeleri ulusal ve uluslararası bilimsel ortamlarda (toplantılarda) tanıtır.
2 Alanında bilimsel araştırma yaparak bilgiye genişlemesine ve derinlemesine ulaşır, alanında güncel teknik ve yöntemler ile bunların kısıtları hakkında sahip olduğu kapsamlı bilgiyi elde ettiği bilgi ile karşılaştırarak değerlendirir ve sentezleyerek yeni sonuçlar ortaya koyar.
3 Alanı ile ilgili problemleri tanımlar ve formüle eder, yeni ve/veya özgün fikir ve yöntemler geliştirir; karmaşık sistem veya süreçleri tasarlar ve tasarımlarında yenilikçi/alternatif çözümler ve/veya yöntemler geliştirir.
4 Kuramsal, deneysel ve modelleme esaslı araştırmaları tasarlar ve uygular, belirsiz, sınırlı ya da eksik verileri bilimsel yöntemlerle tamamlar; verilerin toplanması, yorumlanması, duyurulması ile yeni modellemelerin oluşturulması aşamalarında ve mesleki tüm etkinliklerde toplumsal, bilimsel ve etik değerleri gözetir.
5 Alanındaki uygulamaların sosyal, çevresel, sağlık, güvenlik, hukuki boyutlarını ile proje yönetimi ve iş hayatı uygulamalarını bilir ve bunların getirdiği kısıtların farkındadır. Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilir, bu tür takımlarda liderlik yapabilir ve karmaşık durumlarda çözüm yaklaşımları geliştirebilir; bağımsız çalışabilir ve sorumluluk alır.
6 Çalışmalarının süreç ve sonuçlarını, alanında veya alan dışındaki ulusal ve uluslararası ortamlarda bir yabancı dili en az Avrupa Dil Portföyü C1 Genel Düzeyinde kullanarak, yazılı ya da sözlü olarak aktararak sözlü ve yazılı iletişim kurar.
7 Analiz alanında yüksek düzeyde bilgi ve yetkinlik kazanır, kompleks analiz ve reel analiz konularını derinlemesine inceleyerek matematiksel analizdeki soyut ve kompleks sayıları anlar.
# Ders Öğrenme Çıktılarının Program Çıktılarına Katkısı PÇ 1 PÇ 2 PÇ 3 PÇ 4 PÇ 5 PÇ 6 PÇ 7
1 Banach Cebirleri ve çeşitlerini tanır.
2 Hilbert Uzaylarını yorumlar.
3 Dual operatörleri tanır.
4 Adjoint operatör, simetrik operatör ve self-adjoint operatör, Unitary operatörleri tanır.
5 Cayley Dönüşümünü, Kapalı Bölge teoremini yorumlar.
6 Fonksiyonel analizin temel teoremlerini yorumlar.
Değerlendirme Sistemi
Yarıyıl Çalışmaları Katkı Oranı
1. Ara Sınav 75
1. Kısa Sınav 25
Toplam 100
1. Yıl İçinin Başarıya 50
1. Final 50
Toplam 100
AKTS - İş Yükü Etkinlik Sayı Süre (Saat) Toplam İş Yükü (Saat)
Ders Süresi (Sınav haftası dahildir: 16x toplam ders saati) 16 3 48
Sınıf Dışı Ders Çalışma Süresi(Ön çalışma, pekiştirme) 16 3 48
Ara Sınav 1 20 20
Ödev 2 10 20
Final 1 25 25
Toplam İş Yükü 161
Toplam İş Yükü / 25 (Saat) 6,44
Dersin AKTS Kredisi 6