| Ders Adı | Kodu | Yarıyıl | T+U Saat | Kredi | AKTS |
|---|---|---|---|---|---|
| Cebirsel Sayılar Teorisi II | MAT 568 | 0 | 3 + 0 | 3 | 6 |
| Ön Koşul Dersleri | |
| Önerilen Seçmeli Dersler | |
| Dersin Dili | Türkçe |
| Dersin Seviyesi | YUKSEK_LISANS |
| Dersin Türü | Seçmeli |
| Dersin Koordinatörü | Prof.Dr. REFİK KESKİN |
| Dersi Verenler | |
| Dersin Yardımcıları | |
| Dersin Kategorisi | Diğer |
| Dersin Amacı | Cebirsel Sayılar Teorisi I adlı derste temeli atılan konu burada sürdürülecek ve cebirsel sayıların uygulamaları Bachet-Mordell Diophantine denklemi ele alınarak incelenecektir. |
| Dersin İçeriği | Cebirsel tamsayılar, Sayı cisimleri, Normlar ve diskriminantlar, Modüller, İdealler ve Z-modül olarak idealler, Kalan sınıfları, Kısaltma kuralı, İdeallerin bölünebilirliği, Asallara parçalama, Esas ideal testleri, Sınıf grubu, Sınıf sayısının sonluluğu, Sınıf gruplarının hesaplanması, Bachet-Mordel denklemi |
| # | Ders Öğrenme Çıktıları | Öğretim Yöntemleri | Ölçme Yöntemleri |
|---|---|---|---|
| 1 | Cebirsel sayılar halkasında ideallerin asal ideallere parçalanmasını öğrenir. | Anlatım, Alıştırma ve Uygulama, Bireysel Çalışma, Problem Çözme, | Sınav, Ödev, |
| 2 | İdeallerin asal ideallerin çarpımı olarak yazılmasını öğrendikten sonra bunu Pell denklemlerinin çözümünde uygular. | Anlatım, Alıştırma ve Uygulama, Bireysel Çalışma, Problem Çözme, | Sınav, Ödev, |
| 3 | Sınıf sayısını hesaplar, bunu Pell denklemlerinin çözümünde kullanır. | Anlatım, Alıştırma ve Uygulama, Bireysel Çalışma, Problem Çözme, | Sınav, Ödev, |
| Hafta | Ders Konuları | Ön Hazırlık |
|---|---|---|
| 1 | Cebirsel tamsayılar | |
| 2 | Sayı cisimleri | |
| 3 | Normlar ve diskriminantlar | |
| 4 | Modüller | |
| 5 | İdealler ve Z-modül olarak idealler | |
| 6 | Kalan sınıfları | |
| 7 | Kalan sınıfları | |
| 8 | Kısaltma kuralı | |
| 9 | İdeallerin bölünebilirliği | |
| 10 | Asallara parçalama | |
| 11 | Esas ideal testleri | |
| 12 | Sınıf grubu ve sınıf sayısının sonluluğu | |
| 13 | Sınıf gruplarının hesaplanması | |
| 14 | Bachet-Mordell denklemi |
| Kaynaklar | |
|---|---|
| Ders Notu | |
| Ders Kaynakları | 1. Ian Stewart and David Tall, Algebraic Number Theory and Fermats Last Theorem, A K Peters, Ltd., 2002. |
| Sıra | Program Çıktıları | Katkı Düzeyi | |||||
|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | |||
| 2 | Alanıyla ilgili güncel yayınları takip eder, problemler ortaya koyar. | X | |||||
| 2 | Alanıyla ilgili güncel yayınları takip eder, problemler ortaya koyar. | X | |||||
| 3 | Matematik lisans programıyla ilgili disiplinler arasındaki bağlantıları kavrar. | X | |||||
| 3 | Matematik lisans programıyla ilgili disiplinler arasındaki bağlantıları kavrar. | X | |||||
| 4 | Edindiği tecrübe ve bilgiyi, alanı dışındaki konularla ilişkilendirerek yeni bilgiler oluşturur. | X | |||||
| 4 | Edindiği tecrübe ve bilgiyi, alanı dışındaki konularla ilişkilendirerek yeni bilgiler oluşturur. | X | |||||
| 5 | Karşılaştığı problemleri analiz ederek, çözüme ulaşmak için farklı ispat yöntemleri kullanır. | X | |||||
| 5 | Karşılaştığı problemleri analiz ederek, çözüme ulaşmak için farklı ispat yöntemleri kullanır. | X | |||||
| 6 | Alanıyla ilgili çözülmesi gereken soruları tespit eder, gerektiğinde liderlik yapar. | X | |||||
| 6 | Alanıyla ilgili çözülmesi gereken soruları tespit eder, gerektiğinde liderlik yapar. | ||||||
| 7 | Farklı disiplinlerde yürütülen çalışmalarda, kendi alanına özgü dinamikleri uygulayarak takım çalışmasında bilgilerini aktarır. | ||||||
| 7 | Farklı disiplinlerde yürütülen çalışmalarda, kendi alanına özgü dinamikleri uygulayarak takım çalışmasında bilgilerini aktarır. | X | |||||
| 8 | Matematik lisans eğitimi boyunca edindiği bilgileri eleştirel bir yaklaşımla değerlendirir, eksiklerini giderir ve güncel konular üzerine yönlenir. | X | |||||
| 8 | Matematik lisans eğitimi boyunca edindiği bilgileri eleştirel bir yaklaşımla değerlendirir, eksiklerini giderir ve güncel konular üzerine yönlenir. | ||||||
| 9 | Bir yabancı dili yazılı ve sözlü olarak iletişim kurabilecek düzeyde bilir, matematik terminolojisine hakim olacak ve kaynak araştırması yapacak şekilde yabancı dil bilgisini kullanır. | X | |||||
| 9 | Bir yabancı dili yazılı ve sözlü olarak iletişim kurabilecek düzeyde bilir, matematik terminolojisine hakim olacak ve kaynak araştırması yapacak şekilde yabancı dil bilgisini kullanır. | X | |||||
| 10 | Lisansta öğrendiği bilgileri geliştirerek matematikte veya uygulama alanlarında uzmanlık düzeyinde kendini geliştirir | X | |||||
| 10 | Lisansta öğrendiği bilgileri geliştirerek matematikte veya uygulama alanlarında uzmanlık düzeyinde kendini geliştirir | X | |||||
| 10 | Lisansta öğrendiği bilgileri geliştirerek matematikte veya uygulama alanlarında uzmanlık düzeyinde kendini geliştirir | X | |||||
| 11 | Çalıştığı alandaki verilerin toplanması, aktarılması ya da bir yayın oluşturulması aşamalarında bilimsel ve kültürel etik değerlerini göz önüne alır. | X | |||||
| # | Ders Öğrenme Çıktılarının Program Çıktılarına Katkısı | PÇ 2 | PÇ 2 | PÇ 3 | PÇ 3 | PÇ 4 | PÇ 4 | PÇ 5 | PÇ 5 | PÇ 6 | PÇ 6 | PÇ 7 | PÇ 7 | PÇ 8 | PÇ 8 | PÇ 9 | PÇ 9 | PÇ 10 | PÇ 10 | PÇ 10 | PÇ 11 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Cebirsel sayılar halkasında ideallerin asal ideallere parçalanmasını öğrenir. | ||||||||||||||||||||
| 2 | İdeallerin asal ideallerin çarpımı olarak yazılmasını öğrendikten sonra bunu Pell denklemlerinin çözümünde uygular. | ||||||||||||||||||||
| 3 | Sınıf sayısını hesaplar, bunu Pell denklemlerinin çözümünde kullanır. |
| Değerlendirme Sistemi | |
|---|---|
| Yarıyıl Çalışmaları | Katkı Oranı |
| 1. Ara Sınav | 100 |
| Toplam | 100 |
| 1. Yıl İçinin Başarıya | 40 |
| 1. Final | 60 |
| Toplam | 100 |
| AKTS - İş Yükü Etkinlik | Sayı | Süre (Saat) | Toplam İş Yükü (Saat) |
|---|---|---|---|
| Ders Süresi (Sınav haftası dahildir: 16x toplam ders saati) | 16 | 3 | 48 |
| Sınıf Dışı Ders Çalışma Süresi(Ön çalışma, pekiştirme) | 16 | 3 | 48 |
| Final | 1 | 30 | 30 |
| Toplam İş Yükü | 126 | ||
| Toplam İş Yükü / 25 (Saat) | 5,04 | ||
| dersAKTSKredisi | 6 | ||