Ders Adı Kodu Yarıyıl T+U Saat Kredi AKTS
Metrik Uzaylarda Sabit Nokta Teorisi II AFT 508 0 3 + 0 3 6
Ön Koşul Dersleri

Metrik Uzaylarda Sabit Nokta Teorisi I 

Önerilen Seçmeli Dersler
Dersin Dili Türkçe
Dersin Seviyesi YUKSEK_LISANS
Dersin Türü Seçmeli
Dersin Koordinatörü Doç.Dr. AYNUR ŞAHİN
Dersi Verenler
Dersin Yardımcıları
Dersin Kategorisi Alanına Uygun Öğretim
Dersin Amacı

Banach uzaylarda sabit nokta teorisinin anlaşılması, metrik sabit nokta teorisi ve Banach kafeslerinde sabit nokta teorisinin öğrenilmesi, Banach uzay ultrapower larının ve özelliklerinin bilinmesi

Dersin İçeriği

Banach uzay, Hahn-Banach teoremi, düzgün konvekslik ve yansımalılık, Banach uzaylarda temel sabit nokta teoremleri, metrik sabit nokta teorisi, keyfi uzaylarda kararlılık sonuçları, Goebel-Karlovitz lemması, orthogonal konvekslik, asimtotik regular dönüşümler, Banach kafesleri, Banach kafeslerinde sabit nokta teorisi, Banach uzay ultrapower ları ve özellikleri, Banach uzay ultrapower larında bazı sabit nokta teoremleri 

Kalkınma Amaçları
# Ders Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
1 He/She recognizes the basic fixed point theorems in Banach spaces. Tartışma, Deney ve Laboratuvar, Gezi / Gözlem,
2 He/She interprets the metric fixed point theory. Anlatım, Soru-Cevap, Tartışma, Deney ve Laboratuvar, Gezi / Gözlem,
3 He/She learns the fixed point theory in Banach lattices. Soru-Cevap, Tartışma, Deney ve Laboratuvar, Gezi / Gözlem, Anlatım,
4 He/She knowns Banach space ultrapowers and their properties. Soru-Cevap, Tartışma, Deney ve Laboratuvar, Gezi / Gözlem, Anlatım,
Hafta Ders Konuları Ön Hazırlık
1 Banach uzay, konvekslik, konvekslik modülü
2 Hahn-Banach teoremi, zayıf ve zayıf* topolojiler ve bazı özellikleri
3 Schur özelliği, düzgün konvekslik ve yansımalılık
4 Banach uzaylarda temel sabit nokta teoremleri
5 Banach cebiri: Stone-Weierstrass teoremi
6 Metrik sabit nokta teorisi
7 Keyfi uzaylarda kararlılık sonuçları
8 Ara Sınav
9 Goebel-Karlovitz lemması, orthogonal konvekslik
10 Asimtotik regular dönüşümler
11 Banach kafesleri
12 Banach kafeslerinde sabit nokta teorisi
13 Banach uzay ultrapower ları ve özellikleri
14 Banach uzay ultrapower larında bazı sabit nokta teoremleri
Kaynaklar
Ders Notu
Ders Kaynakları

1) K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.

2) M.R. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer, 1991.

3) M.A. Khamsi, W.A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Pure and   Applied Mathematics, A Wiley-Intersicence Series of Texts, Monographs and Tracks, 2001.

Sıra Program Çıktıları Katkı Düzeyi
1 2 3 4 5
1 Yaşadığı toplumun bilgi toplumu olmasına katkıda bulunmak, toplumsal, bilimsel, kültürel ve etik sorunlara çözüm sunmak amaçlarıyla alanındaki bilimsel, teknolojik, sosyal veya kültürel ilerlemeleri ulusal ve uluslararası bilimsel ortamlarda (toplantılarda) tanıtır.
2 Alanında bilimsel araştırma yaparak bilgiye genişlemesine ve derinlemesine ulaşır, alanında güncel teknik ve yöntemler ile bunların kısıtları hakkında kapsamlı bilgiye sahip olup ve elde ettiği bilgiyi değerlendirir, yorumlar ve uygular. X
3 Alanı ile ilgili problemleri tanımlar ve formüle eder, yeni ve/veya özgün fikir ve yöntemler geliştirir; karmaşık sistem veya süreçleri tasarlar ve tasarımlarında yenilikçi/alternatif çözümler ile gelişmekte olan yenilikçi yöntemleri kullanır. X
4 Kuramsal, deneysel ve modelleme esaslı araştırmaları tasarlar ve uygular, belirsiz, sınırlı ya da eksik verileri bilimsel yöntemlerle tamamlar; verilerin toplanması, yorumlanması, duyurulması aşamalarında ve mesleki tüm etkinliklerde toplumsal, bilimsel ve etik değerleri gözetir.
5 Alanındaki uygulamaların sosyal, çevresel, sağlık, güvenlik, hukuki boyutlarını ve iş hayatı uygulamalarını bilir ve bunların getirdiği kısıtların farkındadır. Disiplin içi ve çok disiplinli takımlarda etkin bir biçimde birlikte ve ya bağımsız çalışabilir ve sorumluluk alır.
6 Limit, süreklilik, türev, integral ve diferansiyel denklemler gibi temel analitik konularında ustalaşır. Reel ve kompleks değerli fonksiyonların davranışlarını daha iyi anlama ve analiz etme yeteneğini kazanır, matematiksel modellemeyi anlar ve karmaşık problemleri analiz eder.
# Ders Öğrenme Çıktılarının Program Çıktılarına Katkısı PÇ 1 PÇ 2 PÇ 3 PÇ 4 PÇ 5 PÇ 6
1 He/She recognizes the basic fixed point theorems in Banach spaces. 5 5
2 He/She interprets the metric fixed point theory. 5 5
3 He/She learns the fixed point theory in Banach lattices. 5 5
4 He/She knowns Banach space ultrapowers and their properties. 0 5 5
Değerlendirme Sistemi
Yarıyıl Çalışmaları Katkı Oranı
1. Ara Sınav 70
1. Ödev 15
2. Ödev 15
Toplam 100
1. Final 50
1. Yıl İçinin Başarıya 50
Toplam 100
AKTS - İş Yükü Etkinlik Sayı Süre (Saat) Toplam İş Yükü (Saat)
Ders Süresi (Sınav haftası dahildir: 16x toplam ders saati) 16 3 48
Sınıf Dışı Ders Çalışma Süresi(Ön çalışma, pekiştirme) 14 1 14
Ara Sınav 1 24 24
Ödev 2 8 16
Final 1 48 48
Toplam İş Yükü 150
Toplam İş Yükü / 25 (Saat) 6
Dersin AKTS Kredisi 6