Ders Adı Kodu Yarıyıl T+U Saat Kredi AKTS
Derin Öğrenme ve Uygulamaları SWE 405 7 3 + 0 3 5
Ön Koşul Dersleri
Önerilen Seçmeli Dersler
Dersin Dili İngilizce
Dersin Seviyesi Lisans
Dersin Türü Seçmeli
Dersin Koordinatörü Prof.Dr. DEVRİM AKGÜN
Dersi Verenler Prof.Dr. DEVRİM AKGÜN,
Dersin Yardımcıları
Dersin Kategorisi Alanına Uygun Öğretim
Dersin Amacı

Derin öğrenme ile ilgili temel bilgileri anlamak, derin öğrenme ile ilgili açık kaynak kütüphaneleri kullanmak, derin öğrenme uygulamaları geliştirmek.

Dersin İçeriği

Mathematical background, tensor operations, Graident descent, backpropagation, Keras deeplearning library ,  Machine learning models, Convolutional neural networks (convnets), transfer learning ,metin verileriyle derin öğrenme,  recurrent neural networks, 1D convnets , Keras functional API, Generative deep learning, current topics

Kalkınma Amaçları
# Ders Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
1 Gezi / Gözlem, Gözlem, Anlatım, Soru-Cevap,
2 Gözlem, Gezi / Gözlem,
3 Anlatım, Gezi / Gözlem,
4 Anlatım, Gözlem,
Hafta Ders Konuları Ön Hazırlık
1 Introduction, Artificial Intelligence, Machine Learning and Deep Learning
2 Mathematical background, tensor operations, activation functions
3 Gradient descent and variants, loss functions
4 Feedforward networks and training, Keras deep learning library
5 Data preprocessing, regularization methods
6 Convolutional neural networks
7 Transfer learning
8 Text processing, embedding layers
9 Sequence processing, Recurrent neural networks (RNN)
10 Simple RNN,LSTM, GRU
11 Keras functional API
12 Generative deep learning
13 Contemporary deep learning topics
14 Presentations
Kaynaklar
Ders Notu
Ders Kaynakları

Chollet, Francois. Deep learning with Python. Simon and Schuster, 2021.

Ders Kaynakları Goodfellow, Ian, et al. Deep learning. Vol. 1. Cambridge: MIT press, 2016.

Sıra Program Çıktıları Katkı Düzeyi
1 2 3 4 5
1 Matematik, fen bilimleri ve ilgili mühendislik disiplinine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinde kullanabilme becerisi. X
2 Karmaşık mühendislik problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi. X
3 Mühendislik uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları geliştirme, seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi. X
4 Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi. X
5 Karmaşık mühendislik problemlerinin veya disipline özgü araştırma konularının incelenmesi için deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisi. X
6 Bilişim Teknolojilerinin yönetim, denetim, gelişim ve güvenliği/güvenilirliği hakkında bilgi sahibi olma ve farkındalık.
7 Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi.
8 Türkçe sözlü ve yazılı etkin iletişim kurma becerisi; en az bir yabancı dil bilgisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi.
9 Yaşam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi.
10 Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk bilinci; mühendislik uygulamalarında kullanılan standartlar hakkında bilgi.
11 Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi.
12 Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık.
# Ders Öğrenme Çıktılarının Program Çıktılarına Katkısı PÇ 1 PÇ 2 PÇ 3 PÇ 4 PÇ 5 PÇ 6 PÇ 7 PÇ 8 PÇ 9 PÇ 10 PÇ 11 PÇ 12
1
2
3
4
Değerlendirme Sistemi
Yarıyıl Çalışmaları Katkı Oranı
1. Ara Sınav 40
1. Ödev 20
2. Ödev 20
1. Proje / Tasarım 20
Toplam 100
1. Final 50
1. Yıl İçinin Başarıya 50
Toplam 100
AKTS - İş Yükü Etkinlik Sayı Süre (Saat) Toplam İş Yükü (Saat)
Ödev 1 5 5
Ara Sınav 1 12 12
Proje / Tasarım 1 14 14
Ders Süresi (Sınav haftası dahildir: 16x toplam ders saati) 16 3 48
Sınıf Dışı Ders Çalışma Süresi(Ön çalışma, pekiştirme) 16 2 32
Kısa Sınav 1 4 4
Final 1 10 10
Toplam İş Yükü 125
Toplam İş Yükü / 25 (Saat) 5
Dersin AKTS Kredisi 5