Course Name Code Semester T+U Hours Credit ECTS
Advanced Logic Circuit Design EEM 533 0 3 + 0 3 6
Precondition Courses
Recommended Optional Courses
Course Language Turkish
Course Level yuksek_lisans
Course Type Optional
Course Coordinator Dr.Öğr.Üyesi AHMET KÜÇÜKER
Course Lecturers
Course Assistants
Course Category
Course Objective It aims increasing the knowledge and depth about the numerical systems, investigating state reduction and coding that is a problem of consecutive circuit design, decreasing the circuit complexity with suitable coding, eliminating the problems about the asynchronous circuits, programmable logical controller design that is used for system designing and investigating the fault analysis topics in logical circuits.
Course Content Frame structures, Boolean algebra, state reduction in consequtive machines, state coding in synchronous consecutive circuits, analysing the consecutive machines, asynchronous consecutive circuit design, circuit designing with PLCs, fault analysis in logical circuits.
# Course Learning Outcomes Teaching Methods Assessment Methods
1 Circuit designing with the PLCs Lecture, Question-Answer, Testing,
2 Investigating the fault analysis in logical circuits. Problem Solving, Lecture, Testing, Homework,
3 The state reduction methods Lecture, Problem Solving, Testing, Homework,
4 Numerical system designs’ problems and their solutions Question-Answer, Problem Solving, Lecture, Testing, Homework,
Week Course Topics Preliminary Preparation
1 Equivalence correlation
2 Partial concatenation correlation
3 Frame structures
4 Boolean algebra
5 State reduction in consequtive machines
6 State reduction in consequtive machines
7 State reduction in consequtive machines
8 Asynchronous consecutive circuit design
9 Asynchronous consecutive circuit design
10 Asynchronous consecutive circuit design
11 Circuit designing with PLCs
12 Circuit designing with PLCs
13 Fault analysis in logical circuits
14 Fault analysis in logical circuits
Resources
Course Notes
Course Resources
Order Program Outcomes Level of Contribution
1 2 3 4 5
1 Ability; to Access to wide and deep information with scientific researches in the field of Engineering, evaluate, interpret knowledge and implement. X
1 Ability; to Access to wide and deep information with scientific researches in the field of Engineering, evaluate, interpret knowledge and implement. X
1 Ability; to Access to wide and deep information with scientific researches in the field of Engineering, evaluate, interpret knowledge and implement. X
2 Ability; To complete and implement “Limited or incomplete data” by using the scientific methods. To stick knowledge of different disciplinarians together. X
2 Ability; To complete and implement “Limited or incomplete data” by using the scientific methods. To stick knowledge of different disciplinarians together. X
2 Ability; To complete and implement “Limited or incomplete data” by using the scientific methods. To stick knowledge of different disciplinarians together. X
3 Ability; to consolidate engineering problems, develop proper method to solve and apply innovative solutions. X
3 Ability; to consolidate engineering problems, develop proper method to solve and apply innovative solutions. X
3 Ability; to consolidate engineering problems, develop proper method to solve and apply innovative solutions. X
4 Ability; To develop new and original ideas and methods, To develop new innovative solutions at design of system, component or process X
4 Ability; To develop new and original ideas and methods, To develop new innovative solutions at design of system, component or process X
4 Ability; To develop new and original ideas and methods, To develop new innovative solutions at design of system, component or process X
5 Comprehensive information on modern techniques, methods and their borders which are being applied to engineering. X
5 Comprehensive information on modern techniques, methods and their borders which are being applied to engineering. X
5 Comprehensive information on modern techniques, methods and their borders which are being applied to engineering. X
6 Ability; to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process. X
6 Ability; to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process. X
6 Ability; to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process. X
7 High level ability to define the required information, data and reach, assess. X
7 High level ability to define the required information, data and reach, assess. X
7 High level ability to define the required information, data and reach, assess. X
8 Ability; To lead multi-disciplinary teams To take responsibility to define approaches for complex situations. X
8 Ability; To lead multi-disciplinary teams To take responsibility to define approaches for complex situations. X
8 Ability; To lead multi-disciplinary teams To take responsibility to define approaches for complex situations. X
9 Systematic and clear verbal or written transfer of the process and results of studies at national and international environments X
9 Systematic and clear verbal or written transfer of the process and results of studies at national and international environments X
9 Systematic and clear verbal or written transfer of the process and results of studies at national and international environments X
10 Social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, announcement. X
10 Social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, announcement. X
10 Social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, announcement. X
11 Awareness at new and developing application of profession and ability to analyze and study on those applications. X
11 Awareness at new and developing application of profession and ability to analyze and study on those applications. X
11 Awareness at new and developing application of profession and ability to analyze and study on those applications. X
12 Ability to interpret engineering application’s social and environmental dimensions and it’s compliance with the social environment. X
12 Ability to interpret engineering application’s social and environmental dimensions and it’s compliance with the social environment. X
12 Ability to interpret engineering application’s social and environmental dimensions and it’s compliance with the social environment. X
Evaluation System
Semester Studies Contribution Rate
1. Ara Sınav 60
1. Proje / Tasarım 20
1. Ödev 20
Total 100
1. Yıl İçinin Başarıya 50
1. Final 50
Total 100
ECTS - Workload Activity Quantity Time (Hours) Total Workload (Hours)
Course Duration (Including the exam week: 16x Total course hours) 16 3 48
Hours for off-the-classroom study (Pre-study, practice) 16 2 32
Mid-terms 2 20 40
Assignment 1 25 25
Performance Task (Laboratory) 1 45 45
Total Workload 190
Total Workload / 25 (Hours) 7.6
dersAKTSKredisi 6