Yazdır

Ders Tanımı

Ders Kodu Yarıyıl T+U Saat Kredi AKTS
LINEAR ALGEBRA I IME 203 3 3 + 1 4 5
Ön Koşul Dersleri
Önerilen Seçmeli Dersler
Dersin Dili Türkçe
Dersin Seviyesi Lisans
Dersin Türü ZORUNLU
Dersin Koordinatörü Prof.Dr. MELEK MASAL
Dersi Verenler Prof.Dr. MELEK MASAL
Dersin Yardımcıları Assist.Emine Nur BILGIC
Dersin Kategorisi Alanına Uygun Temel Öğretim
Dersin Amacı
To show application fields of mathematics by getting mathematics easier and pleasurable by means of this course which contain basic equipment in mathematics and engineer and most important concepts of mathematical language
Dersin İçeriği
Vectors in R^2 and R^3, m x n matrices; addition and scaler product in matrices space, linear independence in matrice space, introduction to concept of vector space. Linear equation systems, Gauss elimination, subspaces. Linear independence and dimension. Linear transformations, relationship between linear transformations and matrices, matrices product, inverse of matrices and applications.
Dersin Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
1 - Explain matrixes and linear equations systems 1 - 4 - A -
2 - Express solution of linear equation systems by the help of elemanter operations and solve with this method 4 - 1 - A -
3 - Express solution of linear equation systems by the help of Gauss – Jordan Elimination Method and solve with this method 1 - 4 - A -
4 - Express concept of linear independence, linear dependance, basis, dimension and apply their applications 1 - 4 - A -
5 - Express and apply isomorphism and do applications 1 - 4 - A -
6 - Express and apply rank of a matrix and do applications 4 - 1 - A -
Öğretim Yöntemleri: 1:Lecture 4:Drilland Practice
Ölçme Yöntemleri: A:Testing

Ders Akışı

Hafta Konular ÖnHazırlık
1 Short definition of group, ring, field
2 Matrixes, addition and scaler product in matrix space, matrix product and applications
3 Square matrix, inverse of a matrix, tranposition of a matrix, some special matrix and exercises
4 Echolon form of a matrix, elemanter operations, elemanter matrixes, theorem of factorisation
5 Matrix and linear equations system, solution of linear equation systems by the help of elemanter operations
6 Gauss – Jordan Elimination Method and exercises
7 Vectors on R^2 and R^3, vector spaces, subspaces, trivial space, proper subsapace
8 Linear independence, linear dependance, basis, dimension, applications
9 Mid – Term Exam
10 Theorem of basis complementation, quotient spaces
11 Direct sum
12 Isomorphisms and exercises
13 Rank of a matrix and related exercises
14 Application of rank ( solutions of linear equation systems )

Kaynaklar

Ders Notu
Ders Kaynakları

Döküman Paylaşımı


Dersin Program Çıktılarına Katkısı

No Program Öğrenme Çıktıları KatkıDüzeyi
1 2 3 4 5

Değerlendirme Sistemi

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ
AraSinav 1 60
KisaSinav 1 15
Odev 1 10
KisaSinav 2 15
Toplam 100
Yıliçinin Başarıya Oranı 50
Finalin Başarıya Oranı 50
Toplam 100

AKTS - İş Yükü

; ;