Ders Adı Kodu Yarıyıl T+U Saat Kredi AKTS
Lineer Cebir MAT 114 2 2 + 0 2 4
Ön Koşul Dersleri

YOK

Önerilen Seçmeli Dersler
Dersin Dili Türkçe
Dersin Seviyesi Lisans
Dersin Türü Zorunlu
Dersin Koordinatörü Prof.Dr. ÖMER FARUK GÖZÜKIZIL
Dersi Verenler Doç.Dr. MURAT SARDUVAN, Prof.Dr. ÖMER FARUK GÖZÜKIZIL, Doç.Dr. MURAT GÜVEN,
Dersin Yardımcıları
Dersin Kategorisi Alanına Uygun Temel Öğretim
Dersin Amacı

Öğrencilerin; lineer denklem sistemlerinin çözümü, matrislerlerle gösterimi, rank, matris ve determinantlarla lineer sistemlerin çözümleri, vektörler, skaler çarpım-vektörel çarpımı, öz değerler ve öz vektörler ve lineer dönüşüm yöntemlerini öğrenmesi ve lineer sistemlerin davranışlarına uyarlayabilmesi.

Dersin İçeriği

Matris ve determinant işlemleri, lineer denklem sistemlerinin matris-determinant yaklaşımlarıyla çözümü (Gauss, Gauss-Jordan, Cramer, ters matris), vektörler, vektörel işlemler, vektörlerin skaler ve vektörel çarpımları, ortagonal-ortanormal vektörler, lineer dönüşümler, kare matrisin öz değer ve öz vektörleri, öz değer - öz vektörlerin lineer sistem davranışına etkisi.

Kalkınma Amaçları
# Ders Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
1 Temel matris – determinant işlemleri, vektör uzayları ve vektörel işlemler, öz değer – öz vektörler ve lineer sistemlerin davranışlarındaki etkileri. Anlatım, Soru-Cevap, Beyin Fırtınası, Grupla Çalışma, Gezi / Gözlem,
Hafta Ders Konuları Ön Hazırlık
1
2 Matrisler, özel matrisler, matris işlemleri (toplama,çarpma, tranzpoze, v.b.), matris gösterimleri ve lineer homojen - homojen olmayan denklem sistemlerinin matris gösterimleri.
3 Elemanter matris işlemleri, Gauss eliminasyon ve Gauss - Jordan yaklaşımıyla lineer denklem sistemlerinin çözümü.
4 Polinom matrisler, Jacobian matrisler ve lineerleştirme, matris - vektör ilişkisi, matrislerin rankı, rankın anlamı, rankın hesaplanması ve lineer bağımsızlık-bağımlılık.
5 Kare matrislerin tersi ve hesaplanması.
6 Determinantlar, determinant yöntemleri (Sarrus, Laplace, Cramer), Vandermonde matrisin determinantı.
7 Minörler, kofaktörler ve Adjoint matris yaklaşımıyla ters matrisin hesaplanması.
8 Lineer denklem sistemlerinin determinantlarla çözümü.
9 Vektörler, vektör - matris ilişkisi, vektörlerin normu, baz vektörler, lineer bağımsız vektörler, baz vektörler-koordinat dönüşümü ve lineer dönüşüm.
10 Vektörlerin skaler çarpımı, ortagonal - ortanormal vektörler, ortagonal projeksiyon ve vektörlerin Gram - Schmidt yaklaşımıyla ortagonal dönüşümleri, vektörel çarpım ve anlamı.
11 Kare matrislerin öz değerleri ve öz vektörleri.
12 Cayley - Hamilton yaklaşımıyla matrislerin kuvvetinin hesaplanması.
13 Matrislerin diyagonal formları, matrislerin genel kuvvetlerinin hesaplanması ve matrislerin benzerliği.
14 Öz değer ve öz vektörlerin lineer sistemlerin davranışlarına etkisi.
Kaynaklar
Ders Notu

1. Aşkın Demirkol, Lineer Cebir Ders Notları (Elektrik-Elektronik Mühendisliği Bölümü)

2. Dersi veren öğretim üyelerinin ders notları.

3. Lineer Cebir, Ömer Faruk Gözükızıl , Sakarya Yayıncılık , 2019 .

Ders Kaynakları

1. David C.Lay, Linear Algebra and Its Applications, Pearson, 2003.
2. Aşkın Demirkol, Mühendisler İçin Lineer Sistemler Lineer Cebir - I , Sakarya Kitabevi, 2011.
3. Aşkın Demirkol, Mühendisler İçin Lineer Sistemler Lineer Cebir - II , Sakarya Kitabevi, 2011.
4. Ömer Faruk Gözükızıl, Lineer Cebir, Değişim Yayınları, İstanbul, 2000.
5.S. Lipschutz, H. Hacısalihoğlu, Ö. Akın, Lineer Cebir Teori ve Problemleri, Nobel Yayın Dağıtım, Ankara, 1991.

Sıra Program Çıktıları Katkı Düzeyi
1 2 3 4 5
1 Veri Biliminde matematik konusunda yeterli bilgi birikimine ve bu alandaki kuramsal ve uygulamalı bilgileri, karmaşık veri bilimi problemlerinin çözümünde kullanabilme becerisine sahiptir.
2 Bilimsel araştırma yapabilme yeteneği ile elde edilen bilgiyi derinlemesine analiz edebilir ve yorumlayabilir
3 Analitik, modelleme ve deneysel araştırmaların tasarlanması ve uygulanması konusunda yetkinliğe; karmaşık veri setlerini analiz etme ve yorumlama yeteneğine sahiptir
4 Eksik veya kısıtlı veri setleriyle çalışarak bilgiyi tamamlayabilir ve farklı disiplinlerden gelen bilgileri entegre edebilir
5 Veri bilimi ve analitiği problemlerini tanımlama ve çözme becerisi için gerekli programlama becerisine sahiptir
6 Çok disiplinli takımlarda liderlik yapabilme, karmaşık problemlere yönelik çözüm stratejileri geliştirebilme, sorumluluk alma ve takım çalışmasına katkı sağlama becerisine sahiptir
7 Yenilikçi fikirler ve yöntemler geliştirme kabiliyetine; veri bilimi ve analitiği alanında veri işleme süreçlerinde yeni yaklaşımlar ortaya koyabilme becerisine sahiptir
8 Gereksinim duyulan veri ve bilgileri tanımlama, erişme ve değerlendirme, veri yönetimi ve analitiği alanında yetkindir.
9 Veri bilimi ve analitiği alanındaki güncel gelişmeleri takip edebilir, öğrenme ve yeni teknolojileri hızlı bir şekilde adapte edebilir
10 Yapılan çalışmaların sonuçlarını etkili bir şekilde aktarabilir ve teknik ve karmaşık konuları anlaşılır bir şekilde sunabilir
11 Veri bilimi ve analitiği uygulamalarının sosyal ve çevresel etkilerinin farkındadır ve bu bağlamda uyum sağlayabilir
12 Veri toplama, analiz etme ve raporlama süreçlerinde toplumsal, bilimsel ve etik değerler hakkında bilgi sahibidir; etik ilkeleri gözetir ve toplumun faydasını ön planda tutar
# Ders Öğrenme Çıktılarının Program Çıktılarına Katkısı PÇ 1 PÇ 2 PÇ 3 PÇ 4 PÇ 5 PÇ 6 PÇ 7 PÇ 8 PÇ 9 PÇ 10 PÇ 11 PÇ 12
1 Temel matris – determinant işlemleri, vektör uzayları ve vektörel işlemler, öz değer – öz vektörler ve lineer sistemlerin davranışlarındaki etkileri.
Değerlendirme Sistemi
Yarıyıl Çalışmaları Katkı Oranı
1. Ara Sınav 100
Toplam 100
1. Final 50
1. Yıl İçinin Başarıya 50
Toplam 100
AKTS - İş Yükü Etkinlik Sayı Süre (Saat) Toplam İş Yükü (Saat)
Ders Süresi (Sınav haftası dahildir: 16x toplam ders saati) 16 2 32
Sınıf Dışı Ders Çalışma Süresi(Ön çalışma, pekiştirme) 15 2 30
Ara Sınav 1 10 10
Kısa Sınav 2 2 4
Ödev 1 2 2
Final 1 12 12
Toplam İş Yükü 90
Toplam İş Yükü / 25 (Saat) 3,6
Dersin AKTS Kredisi 4