Ders Adı Kodu Yarıyıl T+U Saat Kredi AKTS
Advanced Natural Language Processıng SWE 530 0 3 + 0 3 6
Ön Koşul Dersleri
Önerilen Seçmeli Dersler
Dersin Dili İngilizce
Dersin Seviyesi YUKSEK_LISANS
Dersin Türü Seçmeli
Dersin Koordinatörü Dr.Öğr.Üyesi BEYZA EKEN
Dersi Verenler Dr.Öğr.Üyesi BEYZA EKEN,
Dersin Yardımcıları
Dersin Kategorisi Diğer
Dersin Amacı

Teaching basic and advanced natural language processing concepts and techniques.

 
Dersin İçeriği

Basic concepts of natural language processing. Statistical language models. Text classification algorithms and its applications. Sequence labeling algorithms and its applications. Neural models. Large language models. Advanced topics such as dependency parsing, semantic role labeling, question-answer systems and machine translation.

# Ders Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
Hafta Ders Konuları Ön Hazırlık
1 Overview of NLP, practical challenges
2 Linguistic essentials and knowledge levels in NLP: words, morphology, lexicons, semantics
3 Text pre-processing, morphological analysis, edit distance algorithm
4 Text classification with Naive Bayes and Logistic Regression
5 Text classification with neural networks
6 Statistical and neural language models
7 Sequence labeling and applications
8 Meaning representations
9 Midterm
10 Machine translation
11 RNN, LSTM, and Transformer architecture
12 Masked language models
13 Fine tuning, prompt engineering
14 Student presentations
Kaynaklar
Ders Notu
Ders Kaynakları

Speech and Language Processing, Daniel Jurafsky and James H. Martin, 2024, 3rd Edition Draft.

Sıra Program Çıktıları Katkı Düzeyi
1 2 3 4 5
1 Yaşadığı toplumun bilgi toplumu olmasına katkıda bulunmak, toplumsal, bilimsel, kültürel ve etik sorunlara çözüm sunmak amaçlarıyla alanındaki bilimsel, teknolojik, sosyal veya kültürel ilerlemeleri ulusal ve uluslararası bilimsel ortamlarda (toplantılarda) tanıtır.
2 Alanında bilimsel araştırma yaparak bilgiye genişlemesine ve derinlemesine ulaşır, alanında güncel teknik ve yöntemler ile bunların kısıtları hakkında kapsamlı bilgiye sahip olup ve elde ettiği bilgiyi değerlendirir, yorumlar ve uygular.
3 Alanı ile ilgili problemleri tanımlar ve formüle eder, yeni ve/veya özgün fikir ve yöntemler geliştirir; karmaşık sistem veya süreçleri tasarlar ve tasarımlarında yenilikçi/alternatif çözümler ile gelişmekte olan yenilikçi yöntemleri kullanır.
4 Kuramsal, deneysel ve modelleme esaslı araştırmaları tasarlar ve uygular, belirsiz, sınırlı ya da eksik verileri bilimsel yöntemlerle tamamlar; verilerin toplanması, yorumlanması, duyurulması aşamalarında ve mesleki tüm etkinliklerde toplumsal, bilimsel ve etik değerleri gözetir.
5 Alanındaki uygulamaların sosyal, çevresel, sağlık, güvenlik, hukuki boyutlarını ve iş hayatı uygulamalarını bilir ve bunların getirdiği kısıtların farkındadır. Disiplin içi ve çok disiplinli takımlarda etkin bir biçimde birlikte ve ya bağımsız çalışabilir ve sorumluluk alır.
6 Her ölçekte yazılım sistemi için proje planlaması; zaman, kaynak, bütçe ve risk yönetimi yapar, alternatif çözüm yolları belirler.
# Ders Öğrenme Çıktılarının Program Çıktılarına Katkısı PÇ 1 PÇ 2 PÇ 3 PÇ 4 PÇ 5 PÇ 6
Değerlendirme Sistemi
Yarıyıl Çalışmaları Katkı Oranı
1. Ara Sınav 45
1. Proje / Tasarım 45
1. Ödev 10
Toplam 100
1. Yıl İçinin Başarıya 60
1. Final 40
Toplam 100
AKTS - İş Yükü Etkinlik Sayı Süre (Saat) Toplam İş Yükü (Saat)