| Ders Adı | Kodu | Yarıyıl | T+U Saat | Kredi | AKTS |
|---|---|---|---|---|---|
| Phılosophy Of Mathematıcs | IME 402 | 8 | 2 + 0 | 2 | 3 |
| Ön Koşul Dersleri | |
| Önerilen Seçmeli Dersler | |
| Dersin Dili | Türkçe |
| Dersin Seviyesi | Lisans |
| Dersin Türü | Zorunlu |
| Dersin Koordinatörü | Doç.Dr. AYŞE ZEYNEP AZAK |
| Dersi Verenler | |
| Dersin Yardımcıları | Res. Assist. Emine Nur BİLGİÇ |
| Dersin Kategorisi | Alanına Uygun Temel Öğretim |
| Dersin Amacı | To learn the basics of mathematics, methods and the philosophy of mathematics and to evaluate the relationship between the philosophy of mathematics and mathematics education. |
| Dersin İçeriği | Ontology and epistemology of mathematics; numbers, sets, functions, etc. mathematical concepts and proposition and meaning of mathematical expressions; foundations of mathematics, methods and philosophical problems related to the nature of mathematics, objectivity in mathematics and applicability to the real world; Frege, Russel, Hilbert, Brouwer and Gödel; the concept of flatness and dimension, basic theories of mathematics philosophy (Logisicm), formalism and intuitionism, semi-experimentalists and Lakatos; the relationship between mathematics philosophy and mathematics education; social groups in the philosophy of mathematics education |
| # | Ders Öğrenme Çıktıları | Öğretim Yöntemleri | Ölçme Yöntemleri |
|---|---|---|---|
| 1 | Students will understand the ontology and epistemology of mathematics. | Lecture, Drilland Practice, | Testing, |
| 2 | Students will examine the work of the pioneers of mathematical philosophy such as Frege, Russel, Hilbert, Brouwer and Gödel. | Lecture, Drilland Practice, | Testing, |
| 3 | Students willl learn the basics of mathematics, methods and philosophical problems related to the nature of mathematics. | Lecture, Drilland Practice, | Testing, |
| 4 | Students will learn the basic theories of mathematical philosophy, logicism, formalism and intuitionism. | Lecture, Drilland Practice, | Testing, |
| 5 | Students will establish the relationship between mathematics philosophy and mathematics education | Lecture, Drilland Practice, | Testing, |
| Hafta | Ders Konuları | Ön Hazırlık |
|---|---|---|
| 1 | Ontology of mathematics | |
| 2 | Epistemology of mathematics | |
| 3 | Numbers, sets, functions etc. the meaning of mathematical concepts and the meaning of mathematical expressions | |
| 4 | Fundamentals of mathematics | |
| 5 | Methods of mathematics | |
| 6 | Philosophical problems about the nature of mathematics | |
| 7 | Objectivity in mathematics and applicability to the real world | |
| 8 | The works of pioneers such as the philosophy of mathematics such as Frege, Russell, Hilbert Brouwer and Gödel | |
| 9 | Midterm | |
| 10 | Flatness and dimension concept | |
| 11 | Basic theories of mathematics philosophy (Logisicm), formalism and intuitionism | |
| 12 | Semi-experimentalists and Lakatos | |
| 13 | The relationship between mathematics philosophy and mathematics education | |
| 14 | Social groups in the philosophy of mathematics education |
| Kaynaklar | |
|---|---|
| Ders Notu | |
| Ders Kaynakları | Matematik Felsefesi, Stephen F. Barker, İmge Kitabevi Matematik Tarihi ve Felsefesi, Adnan Baki, Pegem Yayıncılık Matematik Felsefesi, Bekir S.Gür, Kadim Yayınları Matematiksel Düşünme, Cemal Yıldırım, Remzi Kitabevi |
| Sıra | Program Çıktıları | Katkı Düzeyi | |||||
|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | |||
| # | Ders Öğrenme Çıktılarının Program Çıktılarına Katkısı |
|---|---|
| 1 | Students will understand the ontology and epistemology of mathematics. |
| 2 | Students will examine the work of the pioneers of mathematical philosophy such as Frege, Russel, Hilbert, Brouwer and Gödel. |
| 3 | Students willl learn the basics of mathematics, methods and philosophical problems related to the nature of mathematics. |
| 4 | Students will learn the basic theories of mathematical philosophy, logicism, formalism and intuitionism. |
| 5 | Students will establish the relationship between mathematics philosophy and mathematics education |
| Değerlendirme Sistemi | |
|---|---|
| Yarıyıl Çalışmaları | Katkı Oranı |
| 1. Ara Sınav | 60 |
| 1. Kısa Sınav | 15 |
| 2. Kısa Sınav | 15 |
| 1. Ödev | 10 |
| Toplam | 100 |
| 1. Yıl İçinin Başarıya | 50 |
| 1. Final | 50 |
| Toplam | 100 |
| AKTS - İş Yükü Etkinlik | Sayı | Süre (Saat) | Toplam İş Yükü (Saat) |
|---|---|---|---|
| Course Duration (Including the exam week: 16x Total course hours) | 16 | 2 | 32 |
| Hours for off-the-classroom study (Pre-study, practice) | 16 | 2 | 32 |
| Mid-terms | 1 | 5 | 5 |
| Quiz | 2 | 3 | 6 |
| Assignment | 1 | 3 | 3 |
| Final examination | 1 | 5 | 5 |
| Toplam İş Yükü | 83 | ||
| Toplam İş Yükü / 25 (Saat) | 3,32 | ||
| dersAKTSKredisi | 3 | ||