Course Name Code Semester T+U Hours Credit ECTS
Finite Element Method-I CMM 508 0 3 + 0 3 6
Precondition Courses
Recommended Optional Courses
Course Language Turkish
Course Level yuksek_lisans
Course Type Optional
Course Coordinator Prof.Dr. ALİ OSMAN AYHAN
Course Lecturers Prof.Dr. ALİ OSMAN AYHAN,
Course Assistants
Course Category
Course Objective Currently, the finite element method is widely used in design and analyses of many high-tech products and still continues its development in the academic studies as well. In the context of this course, basic principles of the finite element method will be taught with applications on linear elastic solid mechanics problems in one, two and three-dimensions. This course will also provide a foundation for a more advanced course Finite Element ? II, which mostly focuses on nonlinear problems.
Course Content Introduction, historical developments on Finite Element Methods. Basics of Finite Element Method for Solid Mechanics problems: Strain-displacement relations, Theory of stress and deformation, Stress-strain-temperature relations, Potential energy of an elastic body, The Rayleigh-Ritz method, Stationary principles and governing equations, Formulas for element stiffness matrices [k] and load vectors {re}, Consistent element nodal forces {re}, Global matrix assembly and solution, Stress Calculation, Isoparametric formulation. Introduction to finite element programs. Model generation and meshing using finite element programs. Applications on one, two and three-dimensional linear elastic problems.
# Course Learning Outcomes Teaching Methods Assessment Methods
1 Knows the basic formulations of finite element (FE) method for solid mechanics problems. Lecture, Question-Answer, Discussion, Drilland Practice, Demonstration, Testing, Homework,
2 Applies the FE formulations to some basic one and two-dimensional solid mechanics problems by hand. Lecture, Question-Answer, Discussion, Drilland Practice, Demonstration, Testing, Homework,
3 Derives and calculates shape functions for a different finite element types. Lecture, Question-Answer, Discussion, Drilland Practice, Demonstration, Testing, Homework,
4 Knows the iso-parametric formulation and its usage in finite element method. Lecture, Question-Answer, Drilland Practice, Demonstration, Testing, Homework,
5 Calculates stiffness matrices and load vectors for different types of elements and loads. Lecture, Question-Answer, Discussion, Drilland Practice, Demonstration, Testing, Homework,
6 Using an FE software, generates one, two or three-dimensional models and meshes. Lecture, Question-Answer, Discussion, Drilland Practice, Demonstration, Motivations to Show, Simulation, Testing, Homework,
7 Defines loading and boundary conditions and material properties for linear elastic finite element models. Lecture, Question-Answer, Discussion, Drilland Practice, Demonstration, Motivations to Show, Simulation, Testing, Homework,
8 Performs solutions of linear finite element models, and interprets results in terms of displacements, stresses and deformations. Lecture, Question-Answer, Discussion, Drilland Practice, Demonstration, Motivations to Show, Simulation, Testing, Homework,
Week Course Topics Preliminary Preparation
1 Introduction, historical developments on Finite Element Methods
2 Basics of Finite Element Method for Solid Mechanics problems
3 Potential energy of an elastic body, The Rayleigh-Ritz method, Stationary principles and governing equations
4 Formulas for element stiffness matrices [k] and load vectors {re}, Consistent element nodal forces {re}
5 Global matrix assembly and solution, Stress Calculation
6 Isoparametric formulation
7 Isoparametric formulation
8 Introduction to available finite element programs
9 Model generation and meshing
10 Mid-term exam
11 Applications on linear elastic problems (1-D, 2-D, 3-D)
12 Applications on linear elastic problems (1-D, 2-D, 3-D)
13 Applications on linear elastic problems (1-D, 2-D, 3-D)
14 Applications on linear elastic problems (1-D, 2-D, 3-D)
Resources
Course Notes
Course Resources 1. Concepts and Applications of Finite Element Analysis (Cook, Malkus and Plesha 4e, John Wiley & Sons, 2001, ISBN: 978-0-471-35605-9)
2. Finite Element Procedures (Bathe, Prentice Hall, 1996, ISBN: 0-13-301458-4).
Order Program Outcomes Level of Contribution
1 2 3 4 5
1 Mühendislik alanında bilimsel araştırma yaparak bilgiye genişlemesine ve derinlemesine ulaşabilme, bilgiyi değerlendirme, yorumlama ve uygulama becerisi
2 Sınırlı ya da eksik verileri kullanarak bilimsel yöntemlerle bilgiyi tamamlayabilme ve uygulama becerisi; değişik disiplinlere ait bilgileri bütünleştirebilme becerisi
3 Mühendislik problemlerini kurgulayabilme, çözmek için yöntem geliştirme ve çözümlerde yenilikçi yöntemler uygulama becerisi
4 Yeni ve orijinal fikir ve yöntemler geliştirme becerisi; sistem, parça veya süreç tasarımlarında yenilikçi çözümler geliştirebilme becerisi
5 Mühendislikte uygulanan modern teknik ve yöntemler ile bunların sınırları hakkında kapsamlı bilgi
6 Analitik, modelleme ve deneysel esaslı araştırmaları tasarlama ve uygulama becerisi; bu süreçte karşılaşılan karmaşık durumları analiz etme ve yorumlama becerisi
7 Gereksinim duyulan bilgi ve verileri tanımlama, bunlara ulaşma ve değerlendirmede ileri düzeyde beceri
8 Çok disiplinli takımlarda liderlik yapma, karmaşık durumlarda çözüm yaklaşımları geliştirebilme ve sorumluluk alma becerisi
9 Çalışmalarının süreç ve sonuçlarını, o alandaki veya dışındaki ulusal ve uluslar arası ortamlarda sistematik ve açık bir şekilde yazılı ya da sözlü olarak aktarabilme becerisi
10 Verilerin toplanması, yorumlanması, duyurulması aşamalarında ve mesleki tüm etkinliklerde toplumsal, bilimsel ve etik değerleri gözetme yeterliliği
11 Mesleğinin yeni ve gelişmekte olan uygulamaları hakkında farkındalık; gerektiğinde bunları inceleme ve öğrenebilme becerisi
12 Mühendislik uygulamalarının sosyal ve çevresel boyutlarını anlama ve sosyal çevreye uyum becerisi
Evaluation System
Semester Studies Contribution Rate
1. Ara Sınav 50
1. Ödev 17
2. Ödev 17
3. Ödev 16
Total 100
1. Yıl İçinin Başarıya 60
1. Final 40
Total 100
ECTS - Workload Activity Quantity Time (Hours) Total Workload (Hours)
Course Duration (Including the exam week: 16x Total course hours) 16 3 48
Hours for off-the-classroom study (Pre-study, practice) 16 3 48
Mid-terms 1 15 15
Assignment 1 15 15
Final examination 1 15 15
Total Workload 141
Total Workload / 25 (Hours) 5.64
dersAKTSKredisi 6