Course Name Code Semester T+U Hours Credit ECTS
Intelligent Techniques In Robotics and Automation BSM 510 0 3 + 0 3 6
Precondition Courses
Recommended Optional Courses
Course Language Turkish
Course Level yuksek_lisans
Course Type Optional
Course Coordinator Dr.Öğr.Üyesi SEÇKİN ARI
Course Lecturers
Course Assistants
Course Category
Course Objective Recently, due to the increasing competition the usage of the automation systems is increased. Robots are also important in the automation. A disciplinary subject robotics became an important concept in the industry effectively.
In this course, it is aimed that the students will learn fundamentals of robotics and they will have information about the problems in robotics and solution of them
Course Content Introduction to robotics and historical developments. Robotics in automations systems. Axis in robotics, coordinate systems and robot types, robot actuators, end effectors, robot dynamics, robot kinematics, kinematics analysis, trajectory planning, robot simulation software, sample robotics applications
# Course Learning Outcomes Teaching Methods Assessment Methods
1 Understand the fundamentals of robotics Lecture, Drilland Practice, Project Based Learning, Testing, Homework,
2 Learns solutions about endustrial applications Lecture, Question-Answer, Drilland Practice, Project Based Learning, Testing, Homework, Project / Design,
Week Course Topics Preliminary Preparation
1 Introduction to robotics, historical developments and basic concepts
2 Robots in automation systems and group technology
3 The axis in robotics, coordinate systems.
4 The robot types and usage area
5 Actuators in robotics
6 Robot dynamics
7 Robot kinematics
8 Kinematics analysis
9 Deriving direct kinematics equations
10 Inverse kinematics problem and solution methods
11 Trajectory planning, obtaining position and speed curves
12 End effectors in robotics
13 Robot simulation software
14 Sample industrial robotics applications
Course Notes
Course Resources
Order Program Outcomes Level of Contribution
1 2 3 4 5
1 ability to access wide and deep information with scientific researches in the field of Engineering, evaluate, interpret and implement the knowledge gained in his/her field of study X
2 ability to complete and implement “limited or incomplete data” by using the scientific methods. X
3 ability to consolidate engineering problems, develop proper method(s) to solve and apply the innovative solutions to them X
4 ability to develop new and original ideas and method(s), to develop new innovative solutions at design of system, component or process X
5 gain comprehensive information on modern techniques, methods and their borders which are being applied to engineering X
6 ability to design and apply analytical, modelling and experimental based research, analyze and interpret the faced complex issues during the design and apply process X
7 gain high level ability to define the required information and data X
8 ability to work in multi-disciplinary teams and to take responsibility to define approaches for complex situations X
9 systematic and clear verbal or written transfer of the process and results of studies at national and international environments X
10 aware of social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation and announcement
11 aware of new and developing application of profession and ability to analyze and study on those applications X
12 ability to interpret engineering application’s social and environmental dimensions and it’s compliance with the social environment
Evaluation System
Semester Studies Contribution Rate
1. Ara Sınav 100
Total 100
1. Yıl İçinin Başarıya 50
1. Final 50
Total 100
ECTS - Workload Activity Quantity Time (Hours) Total Workload (Hours)
Course Duration (Including the exam week: 16x Total course hours) 16 3 48
Hours for off-the-classroom study (Pre-study, practice) 16 3 48
Mid-terms 1 25 25
Final examination 1 20 20
Total Workload 141
Total Workload / 25 (Hours) 5.64
dersAKTSKredisi 6