Ders Bilgileri

#### Ders Tanımı

Ders Kodu Yarıyıl T+U Saat Kredi AKTS
COMPUTATIONAL FLUID DYNAMICS MKM 550 0 3 + 0 3 6
Ön Koşul Dersleri Engineering Mathematics, Advanced Fluid Dynamics N/A
 Dersin Dili Türkçe Dersin Seviyesi Yüksek Lisans Dersin Türü SECMELI Dersin Koordinatörü Prof.Dr. TAHSİN ENGİN Dersi Verenler Dersin Yardımcıları Res.Asst. Muaz Kemerli Dersin Kategorisi Dersin Amacı Provide graduate students with background on the computational fluid dynamics and related methods, and use this knowledge to solve engineering problems, in which fluid flow takes place. Dersin İçeriği Introduction and basic definitions, Review of the fundamental equations and related boundary conditions, Solution of IVPs and BVPs, Thomas algorithm, Mathematical behavior of PDEs, Vorticity-stream function relations, Turbulence models, Finite difference method (FDM), Explicit and implicit methods, Finite volume method, Solution schemes: SIMPLE, SIMPLER, SIMPLEC, PISO.
 Dersin Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri 1 - Ability to derive conservation laws 2 - 4 - 15 - A - C - 2 - Appreciate the nature of turbulence and turbulence models 1 - 2 - 4 - A - C - 3 - Ability to solve diffusion type problems with FVM 1 - 2 - 4 - A - C - 4 - Ability to numerically solve convection-diffusion type problems with FVM 1 - 3 - 4 - A - C - 5 - Ability to numerically solve unsteady convection-diffusion type problems with FVM and implementation of boundary conditions 1 - 2 - 3 - 4 - 6 - A - C -
 Öğretim Yöntemleri: 2:Question-Answer 4:Drilland Practice 15:Problem Solving 1:Lecture 3:Discussion 6:Motivations to Show Ölçme Yöntemleri: A:Testing C:Homework

#### Ders Akışı

Hafta Konular ÖnHazırlık
1 Introduction and basic definitions, Review of the fundamental equations and related boundary conditions
2 Introduction and basic definitions, Review of the fundamental equations and related boundary conditions
3 Turbulence Modeling and Turbulence Models
4 Turbulence Modeling and Turbulence Models
5 The finite volume method for diffusion problems
6 The finite volume method for diffusion problems
7 The finite volume method for convection---diffusion problems
8 The finite volume method for convection---diffusion problems
9 The finite volume method for convection---diffusion problems
10 Solution algorithms for pressure---velocity coupling in steady flows
11 Solution algorithms for pressure---velocity coupling in steady flows
12 The finite volume method for unsteady flows
13 Implementation of boundary conditions
14 CFD Applications with ANSYS Fluent

#### Kaynaklar

Ders Notu

[1] Engin T., "Computational Heat Transfer and Fluid Flow: Handouts", Sakarya, 2017.

Ders Kaynakları

[1] Versteeg H. K., and Malalasekera W., “An introduction to computational fluid dynamics: The finite volume method”, 2nd Ed., Pearson, Prentice Hall, 2007.

[2] Patankar, S. V., ”Numerical Heat Transfer and Fluid Flow”, Taylor Francis, New York, 1980.

[3] Hoffman K. A., and Chiang S. T., “Computational Fluid Dynamics for Engineers”, Wichita, Kansas, Engineering Education System, 1993.

[4] Tannehill J.C., Anderson D.A., and Pletcher R.H., “Computational Fluid Mechanics and Heat Transfer”, Washington DC, Taylor and Francis, 1997

[5] Anderson, J D., “Computational Fluid Dynamics: The Basics with Applications”, MacGraw Hill, 1995.

#### Dersin Program Çıktılarına Katkısı

No Program Öğrenme Çıktıları KatkıDüzeyi
1 2 3 4 5
1 X
2 X
3 X
4 X
5 X
6 X
7 X
8 X
9 X
10 X
11 X
12 X

#### Değerlendirme Sistemi

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ
AraSinav 1 30
Odev 1 12
SozluSinav 1 20
Odev 2 12
Odev 3 13
Odev 4 13
Toplam 100
Yıliçinin Başarıya Oranı 60
Finalin Başarıya Oranı 40
Toplam 100

#### AKTS - İş Yükü

Etkinlik Sayısı Süresi(Saat) Toplam İş yükü(Saat)
Course Duration (Including the exam week: 16x Total course hours) 16 3 48
Hours for off-the-classroom study (Pre-study, practice) 15 3 45
Mid-terms 1 10 10
Assignment 4 6 24
Oral Examination 0 0 0
Performance Task (Laboratory) 0 0 0
Final examination 1 12 12
Toplam İş Yükü 139
Toplam İş Yükü /25(s) 5.56
Dersin AKTS Kredisi 5.56
; ;