Yazdır

Ders Tanımı

Ders Kodu Yarıyıl T+U Saat Kredi AKTS
LINEAR ALGEBRA II IME 204 4 3 + 1 4 5
Ön Koşul Dersleri
Önerilen Seçmeli Dersler
Dersin Dili Türkçe
Dersin Seviyesi Lisans
Dersin Türü ZORUNLU
Dersin Koordinatörü Prof.Dr. MELEK MASAL
Dersi Verenler
Dersin Yardımcıları Assist.Emine Nur BİLGİÇ
Dersin Kategorisi Alanına Uygun Temel Öğretim
Dersin Amacı
To show application fields of mathematics by getting mathematics easier and pleasurable by means of this course which contain basic equipment in mathematics and engineer and most important concepts of mathematical language
Dersin İçeriği
Orthogonal; concepts of orthogonal in R^ n and distance function, Gram-Schmidt operation, othogonal matrix, least squances and aplications. Determinants: determinant and reduction, solutions of linear equations with Cramer Rule. Characteristic equations of matrix, characteristic values and eigen vectors, Diagonalize and matrix operations.
Dersin Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri
1 - Express the definition of orthogonality 1 - 4 - A -
2 - Express the concepts of inner product spaces, euclidean space, unitary space and their properties 1 - 4 - A -
3 - Explain linear transformations and their properties 1 - 4 - A -
4 - Express and apply diagonalisation, characteristic value, characteristic vector, characteristic polynomial, characteristic equations. 1 - 4 - A -
5 - Express and applyTheorem of Cayley-Hamilton and its conclusions. 1 - 4 - A -
6 - Explain orthogonal and unitary transformations with symmetric and hermit transformations 1 - 4 - A -
Öğretim Yöntemleri: 1:Lecture 4:Drilland Practice
Ölçme Yöntemleri: A:Testing

Ders Akışı

Hafta Konular ÖnHazırlık
1 Orthogonal; concepts of orthogonal in R^ n, inner product spaces, euclidean space, unitary space, matrix equaled to inner product
2 Schwarz inequality, distance function, orthogonal complement, orthonormal base
3 Gram-Schmidt Method, linear transformations and matrixes
4 Rank and core of linear transformation
5 Matrix of linear transformation, briefly permutations
6 Determinants: determinant and reduction, properties of determinant, determinants of elementary matrixes
7 Minor, cofactor, determinant expansions, inverse of a matrix
8 Solutions of linear equations with Cramer Rule, vector product, mixed scalar product
9 Mid – Term Exam
10 Diagonalisation, characteristic value, characteristic vector, characteristic polynomial, characteristic equations
11 Theorems related diagonalisation, characteristic vectors and exercises
12 Theorem of Cayley-Hamilton and its conclusions, applications
13 Orthogonal and unitary transformations
14 Symmetric and hermit transformations

Kaynaklar

Ders Notu
Ders Kaynakları

Döküman Paylaşımı


Dersin Program Çıktılarına Katkısı

No Program Öğrenme Çıktıları KatkıDüzeyi
1 2 3 4 5

Değerlendirme Sistemi

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ
AraSinav 1 50
KisaSinav 1 15
Odev 1 20
KisaSinav 2 15
Toplam 100
Yıliçinin Başarıya Oranı 50
Finalin Başarıya Oranı 50
Toplam 100

AKTS - İş Yükü

Etkinlik Sayısı Süresi(Saat) Toplam İş yükü(Saat)
Course Duration (Including the exam week: 16x Total course hours) 16 3 48
Hours for off-the-classroom study (Pre-study, practice) 16 3 48
Mid-terms 1 5 5
Quiz 3 5 15
Assignment 0 0 0
Final examination 1 5 5
Toplam İş Yükü 121
Toplam İş Yükü /25(s) 4.84
Dersin AKTS Kredisi 4.84
; ;