Ders Bilgileri

#### Ders Tanımı

Ders Kodu Yarıyıl T+U Saat Kredi AKTS
MATHEMATICAL ELEMENTS FOR COMPUTER GRAPHICS CMM 513 0 3 + 0 3 6
 Dersin Dili Türkçe Dersin Seviyesi Yüksek Lisans Dersin Türü SECMELI Dersin Koordinatörü Doç.Dr. ERGÜN NART Dersi Verenler Dersin Yardımcıları Dersin Kategorisi Alanına Uygun Öğretim Dersin Amacı Teaching graduate students the mathematical elements for geometric modeling Dersin İçeriği Basics of Geometric Modeling, 2D and 3D Transformations, Perspectives, Planes and Space Curves, Surfaces, Solids, Analytical and Relational Properties and Intersections
 Dersin Öğrenme Çıktıları Öğretim Yöntemleri Ölçme Yöntemleri 1 - Understanding the definition of geometric modeling 1 - 4 - 15 - C - 2 - Applying 2D transformations: Rotation, Reflection, Scaling, homogenous coordinates 1 - 4 - 15 - C - 3 - Performing multiple transformations 1 - 4 - 15 - C - 4 - Applying 3D transformations: Rotation, Reflection, Scaling, and Multiple transformations 1 - 4 - 15 - C - 5 - Obtaining Orthographic perspective transformation matrices for 3D objects and calculating new coordinates 1 - 4 - 15 - C - 6 - Obtaining axonometric perspective transformation matrices for 3D objects and calculating new coordinates 1 - 4 - 15 - C - 7 - Obtaining Oblique perspective transformation matrices for 3D objects and calculating new coordinates 1 - 4 - 15 - C - 8 - Learning Space curve types and their mathematical forms, and Applying calculation algorithms 1 - 4 - 15 - C - 9 - Knowing mathematical forms of surfaces 1 - 4 - 15 - C - 10 - Knowing the conditions for creating solid models 1 - 4 - 15 - C - 11 - Knowing surface intersection techniques 1 - 4 - 15 - C -
 Öğretim Yöntemleri: 1:Lecture 4:Drilland Practice 15:Problem Solving Ölçme Yöntemleri: C:Homework

#### Ders Akışı

Hafta Konular ÖnHazırlık
1 Basics of Geometric Modeling
2 2D Transformations
3 Exercises I ( Rotation, Reflection, Scaling, Homogenous Coordinates, Multiple Transformations )
4 Exercises II ( Rotation and reflection with respect to a point and a line, General scaling)
5 3D Transformations
6 Exercises I ( Scaling, Shearing, Rotation, Reflection, Multiple Transformations)
7 Exercises II ( Rotation with respect to parallel axis, Rotation with respect to arbitrary axis, Reflection with respect to arbitrary plane )
8 Perspectives
9 Planes and Space Curves ( Cubic Splines, Bezier Curves, NURBS)
10 Midterm exam
11 Surfaces
12 Solids
13 Analytical and Relational Properties
14 Intersections

#### Kaynaklar

Ders Notu Geometric Modeling, Mortenson, M. E. , 1985 , John Wiley & Sons
Mathematical Elements for Computer Graphics, Rogers, D. , Adams , J. , 1990 , McGraw-Hill
Ders Kaynakları The NURBS Book, Piegl L. ,Tiller W. , 1997 , Springer-Verlag

#### Dersin Program Çıktılarına Katkısı

No Program Öğrenme Çıktıları KatkıDüzeyi
1 2 3 4 5

#### Değerlendirme Sistemi

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ
AraSinav 1 45
KisaSinav 1 15
Odev 1 2
ProjeTasarim 1 10
KisaSinav 2 15
Odev 2 2
Odev 3 2
Odev 4 2
Odev 5 2
Odev 6 2
Odev 7 3
Toplam 100
Yıliçinin Başarıya Oranı 40
Finalin Başarıya Oranı 60
Toplam 100

; ;