Ders Akışı

Hafta Konular ÖnHazırlık
1 Vector Algebra [1] pp. 212-238
2 Differential Vector Operators [1] pp. 212-238
3 Line integral; Green´s theorem in plane [1] pp. 377-387
4 Divergence Theorem; StokesTheorem [1] pp. 401-409
5 Linear Vector Space [1] pp. 242-272
6 Linear Operators [1] pp. 242-272
7 Matrix Algebra; Similarity Transformations [1] pp. 242-272
8 Eigenvalues and Eigenvectors of a Matrix [1] pp. 272-307
9 MIDTERM EXAM
10 Orthogonal polynomials; Legendre polynomials; Spherical Harmonics [1] pp. 507-640
11 Hermit polynomials; Laguerre polynomials; Bessel functions [1] pp. 507-640
12 Complex Functions; Complex integration [1] pp. 824-867
13 Residue theorem and its applications [1] pp. 824-867
14 Fourier Transforms; Laplace Transforms [1] pp. 433-459

Kaynaklar

Ders Notu [1] K. F. Riley, M. P. Hobson, S. J. Bence, Mathematical Methods for Physics and Engineering, Cambridge University Press, March 2006
Ders Kaynakları

Döküman Paylaşımı

; ;